Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles

نویسندگان

  • Satoshi Honda
  • Takuya Yamamoto
  • Yasuyuki Tezuka
چکیده

Cyclic molecules provide better stability for their aggregates. Typically in nature, the unique cyclic cell membrane lipids allow thermophilic archaea to inhabit extreme conditions. By mimicking the biological design, the robustness of self-assembled synthetic nanostructures is expected to be improved. Here we report topology effects by cyclized polymeric amphiphiles against their linear counterparts, demonstrating a drastic enhancement in the thermal, as well as salt stability of self-assembled micelles. Furthermore, through coassembly of the linear and cyclic amphiphiles, the stability was successfully tuned for a wide range of temperatures and salt concentrations. The enhanced thermal/salt stability was exploited in a halogen exchange reaction to stimulate the catalytic activity. The mechanism for the enhancement was also investigated. These topology effects by the cyclic amphiphiles offer unprecedented opportunities in polymer materials design unattainable by traditional means.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block

Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...

متن کامل

Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies

Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...

متن کامل

Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies

Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...

متن کامل

Rapid Synthesis of Nanostructured Pure Anatase TiO2 with High Thermal Stability by Polymeric Sol-Gel Route

The nanostructured anatase TiO2 with high thermal stability was prepared by polymeric sol-gel method without any additives. The particle size distribution of polymeric titania sol was determined by dynamic light scattering (DLS). Then properties of obtained titania were investigated by TG-DTA, XRD, FESEM and TEM. Also, the decolorization capability of resultant anatase was evaluated using methy...

متن کامل

A Fast Method for Synthesis Magnesium Hydroxide Nanoparticles, Thermal Stable and Flame Retardant Poly vinyl alcohol Nanocomposite

Magnesium hydroxide nanostructures as an effective flame retardant were synthesized by a facile and rapid microwave reaction. The effect of different surfactants such as cationic, anionic and polymeric on the morphology of magnesium hydroxide nanostructures was investigated. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013